Heat production in quiescent cardiac muscle is length, velocity and muscle dependent: Implications for active heat measurement

EXPERIMENTAL PHYSIOLOGY(2021)

引用 2|浏览5
暂无评分
摘要
New Findings What is the central question of this study? Intracellular energetic processes in quiescent cardiac muscle release 'basal' heat; during contraction, a much larger amount of 'active' heat is also produced. Previously, measurement challenges have constrained researchers to assume that basal heat rate remains constant during contraction and shortening. Is this assumption correct? What is the main finding and its importance? We show that basal heat rate is modulated by the extent and velocity of muscle shortening. Their relative contributions are muscle specific. We apply a method with which researchers can now disentangle, for each experiment, changes in basal heat from active heat production, providing more precise measures of the individual energetic processes underlying cardiac muscle contraction. Separating the variations in cardiac basal heat rate from variations in active heat rate is necessary to determine cardiac muscle energy consumption accurately during the performance of active work. By developing a model of cardiac muscle basal heat rate, we aimed to investigate changes in basal heat rate when cardiac muscle performs work. Experiments were conducted on 10 isolated rat cardiac trabeculae subjected to both active (work-loops) and quiescent (length-change and velocity) interventions. Muscle force, length and heat output rate were measured simultaneously in a flow-through work-loop calorimeter. Quiescent muscle characteristics were used to parameterize muscle-specific models of change in basal heat rate, thereby to predict dynamic changes in basal heat rate during active work-loop contraction. Our data showed that the quiescent heat characteristics of cardiac muscle varied between samples, displaying dependence on both the extent and the rate of change in muscle length. We found a moderate correlation between muscle dimensions (cross-sectional area and volume) and the length-dependent basal heat parameter (P = 0.0330 and P = 0.0242, respectively), but no correlation with the velocity-dependent parameter. These findings lead us to conclude that the heat output of cardiac muscle at quiescence varies with both the extent and the velocity of shortening, to an extent that is muscle specific, and that this variation must be measured and accounted for in each specimen when assessing active energetics.
更多
查看译文
关键词
cardiac basal heat, cardiac heat modelling, cardiac muscle energetics, Feng effect, heart muscle, resting heat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要