Finite-temperature quantum discordant criticality

PHYSICAL REVIEW B(2022)

引用 2|浏览12
暂无评分
摘要
In quantum statistical mechanics, finite-temperature phase transitions are typically governed by classical field theories. In this context, the role of quantum correlations is unclear: recent contributions have shown how entanglement is typically very short-ranged, and thus uninformative about long-ranged critical correlations. In this work, we show the existence of finite-temperature phase transitions where a broader form of quantum correlation than entanglement, the entropic quantum discord, can display genuine signatures of critical behavior. We consider integrable bosonic field theories in both two-and three-dimensional lattices, and show how the two-mode Gaussian discord decays algebraically with the distance even in cases where the entanglement negativity vanishes beyond nearest-neighbor separations. Systematically approaching the zero-temperature limit allows us to connect discord to entanglement, drawing a generic picture of quantum correlations and critical behavior that naturally describes the transition between entangled and discordant quantum matter.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要