A High-Content Screen for C/EBP alpha Expression Identifies Novel Therapeutic Agents in Dedifferentiated Liposarcoma

CLINICAL CANCER RESEARCH(2022)

引用 2|浏览34
暂无评分
摘要
Purpose: Dedifferentiated liposarcoma (DDLS), one of the most common and aggressive sarcomas, infrequently responds to chemotherapy. DDLS survival and growth depend on under-expression of C/EBP alpha, a tumor suppressor and transcriptional regulator controlling adipogenesis. We sought to screen and prioritize candidate drugs that increase C/EBP alpha expression and may therefore serve as differentiation-based therapies for DDLS. Experimental Design: We screened known bioactive compounds for the ability to restore C/EBP alpha expression and inhibit proliferation selectively in two DDLS cell lines but not in normal adipose-derived stem cells (ASC). Selected hits' activity was validated, and the mechanism of the most potent, SN-38, was investigated. The in vivo efficacy of irinotecan, the prodrug of SN-38, was evaluated in DDLS xenograft models. Results: Of 3,119 compounds, screen criteria were met by 19. Validation experiments confirmed the DDLS selectivity of deguelin, emetine, and SN-38 and showed that they induce apoptosis in DDLS cells. SN-38 had the lowest IC50 (approximately 10 nmol/L), and its pro-apoptotic effects were countered by knockdown of CEBPA but not of TP53. Irinotecan significantly inhibited tumor growth at well-tolerated doses, induced nuclear expression of C/EBP alpha, and inhibited HIF1 alpha expression in DDLS patient-derived and cancer cell line xenograft models. In contrast, doxorubicin, the most common treatment for nonresectable DDLS, reduced tumor growth by 30% to 50% at a dose that caused weight loss. Conclusions: This high-content screen revealed potential treatments for DDLS. These include irinotecan, which induces apoptosis of DDLS cells in a C/EBP alpha-dependent, p53-independent manner, and should be clinically evaluated in patients with advanced DDLS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要