SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nucleosome assembly activity

SCIENCE ADVANCES(2021)

引用 10|浏览5
暂无评分
摘要
The adenosine 5'-triphosphate (ATP)-dependent chromatin remodeler SMARCAD1 acts on nucleosomes during DNA replication, repair, and transcription, but despite its implication in disease, information on its function and biochemical activities is scarce. Chromatin remodelers use the energy of ATP hydrolysis to slide nucleosomes, evict histones, or exchange histone variants. Here, we show that SMARCAD1 transfers the entire histone octamer from one DNA segment to another in an ATP-dependent manner but is also capable of de novo nucleosome assembly from histone octamer because of its ability to simultaneously bind all histones. We present a low-resolution cryo-electron microscopy structure of SMARCAD1 in complex with a nucleosome and show that the adenosine triphosphatase domains engage their substrate unlike any other chromatin remodeler. Our biochemical and structural data provide mechanistic insights into SMARCAD1-induced nucleosome disassembly and reassembly.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要