Mesoscale Frank-Kasper Crystal Structures from Dendron Assembly by Controlling Core Apex Interactions

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2021)

引用 12|浏览11
暂无评分
摘要
Single-component polymeric materials open up a great potential for self-assembly into mesoscale complex crystal structures that are known as Frank-Kasper (FK) phases. Predicting the packing structures of the soft-matter spheres, however, remains a challenge even when the molecular design is precisely known. Here, we investigate the role of the molecules' enthalpic interaction in determining the low-symmetry crystal structures. To this end, we synthesize architecturally asymmetric dendrons by varying their apex functionalities and examine the packing structures of the second-generation (G2) dendritic wedges. Our work shows that weakening the hydrogen bonding of the dendron apex makes the particles softer and smaller, and leads to the formation of various FK structures at lower temperatures, including the new observation of a FK C14 phase in the cone-shaped dendron systems. As a consequence of the free energy balance between the particle's interfacial tension and the chain's stretching, various packing structures are mainly tuned by designing the hydrogen bonding interaction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要