Novel scaffold based graphene oxide doped electrospun iota carrageenan/polyvinyl alcohol for wound healing and pathogen reduction: in-vitro and in-vivo study

SCIENTIFIC REPORTS(2021)

引用 14|浏览6
暂无评分
摘要
Wound healing is a complicated multicellular process that involves several kinds of cells including macrophages, fibroblasts, endothelial cells, keratinocytes and platelets that are leading to their differentiation towards an anti-inflammatory response for producing several chemokines, cytokine and growth factors. In this study, electrospun nanofiber scaffold named (MNS) is composed of polyvinyl alcohol (PVA)/iota carrageenan (IC) and doped with partially reduced graphene oxide (prGO) that is successfully synthesized for wound healing and skin repair. The fabricated MNS was tested in case of infection and un-infection with E. coli and Staphylococcus and in both of the presence and in the absence of yeast as a natural nutritional supplement. Numerous biochemical parameters including total protein, albumin, urea and LDH, and hematological parameters were evaluated. Results revealed that the MNS was proved to be effective on most of the measured parameters and had exhibited efficient antibacterial inhibition activity. Whereas it can be used as an effective antimicrobial agent in wound healing, however, histopathological findings confirmed that the MNS caused re-epithelialization and the presence of yeast induced hair follicles growth and subsequently it may be used to hide formed head wound scar.
更多
查看译文
关键词
graphene oxide,electrospun iota carrageenan/polyvinyl,wound healing,in-vitro,in-vivo
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要