Molecular Mechanism of the Anti-Inflammatory Action of Heparin

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2021)

引用 21|浏览24
暂无评分
摘要
Our objective is to reveal the molecular mechanism of the anti-inflammatory action of low-molecular-weight heparin (LMWH) based on its influence on the activity of two key cytokines, IFN gamma and IL-6. The mechanism of heparin binding to IFN gamma and IL-6 and the resulting inhibition of their activity were studied by means of extensive molecular-dynamics simulations. The effect of LMWH on IFN gamma signalling inside stimulated WISH cells was investigated by measuring its antiproliferative activity and the translocation of phosphorylated STAT1 in the nucleus. We found that LMWH binds with high affinity to IFN gamma and is able to fully inhibit the interaction with its cellular receptor. It also influences the biological activity of IL-6 by binding to either IL-6 or IL-6/IL-6R alpha, thus preventing the formation of the IL-6/IL-6R alpha/gp130 signalling complex. These findings shed light on the molecular mechanism of the anti-inflammatory action of LMWH and underpin its ability to influence favourably conditions characterised by overexpression of these two cytokines. Such conditions are not only associated with autoimmune diseases, but also with inflammatory processes, in particular with COVID-19. Our results put forward heparin as a promising means for the prevention and suppression of severe CRS and encourage further investigations on its applicability as an anti-inflammatory agent.

更多
查看译文
关键词
molecular dynamics, molecular modelling, cytokine storm, inflammation, low-molecular-weight heparin (LMWH), IFN gamma, IL-6, signalling pathway, COVID-19
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要