Titratable Pharmacological Regulation of CAR T Cells Using Zinc Finger-Based Transcription Factors

CANCERS(2021)

引用 7|浏览26
暂无评分
摘要
Simple Summary: Chimeric antigen receptor (CAR) T cell therapy can be associated with substantial side effects primarily due to intense immune activation following treatment, or target antigen recognition on off-tumor tissue. Consequently, temporal and tunable control of CAR T cell activity is of major importance for the clinical translation of innovative CAR designs. This work demonstrates the transcriptional regulation of an anti-CD20 CAR in primary T cells using a drug inducible zinc finger-based transcription factor. The switch system enables titratable induction of CAR expression and CAR T cell effector function with the clinically relevant inducer drug tamoxifen and its metabolites both in vitro and in vivo, whereby CAR activity is strictly dependent on the presence of the inducer drug. The results obtained can readily be transferred to other CARs for which an improved control of expression is required. Chimeric antigen receptor (CAR) T cell therapy has emerged as an attractive strategy for cancer immunotherapy. Despite remarkable success for hematological malignancies, excessive activity and poor control of CAR T cells can result in severe adverse events requiring control strategies to improve safety. This work illustrates the feasibility of a zinc finger-based inducible switch system for transcriptional regulation of an anti-CD20 CAR in primary T cells providing small molecule-inducible control over therapeutic functions. We demonstrate time- and dose-dependent induction of anti-CD20 CAR expression and function with metabolites of the clinically-approved drug tamoxifen, and the absence of background CAR activity in the non-induced state. Inducible CAR T cells executed fine-tuned cytolytic activity against target cells both in vitro and in vivo, whereas CAR-related functions were lost upon drug discontinuation. This zinc finger-based transcriptional control system can be extended to other therapeutically important CARs, thus paving the way for safer cellular therapies.
更多
查看译文
关键词
cellular immunotherapy, chimeric antigen receptor T cells (CAR T cells), transcriptional control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要