miR-363-3p induces EMT via the Wnt/beta-catenin pathway in glioma cells by targeting CELF2

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE(2021)

引用 8|浏览10
暂无评分
摘要
In our previous study, we reported that CELF2 has a tumour-suppressive function in glioma. Here, we performed additional experiments to elucidate better its role in cancer. The expression profile of CELF2 was analysed by the GEPIA database, and Kaplan-Meier curves were used to evaluate the overall survival rates. Four different online databases were used to predict miRNAs targeting CELF2, and the luciferase assay was performed to identify the binding site. The biological effects of miR-363-3p and CELF2 were also investigated in vitro using MTT, Transwell, and flow cytometry assays. Western blotting, qPCR, and TOP/FOP flash dual-luciferase assays were performed to investigate the impact of miR-363-3p and CELF2 on epithelial-to-mesenchymal transition (EMT) and the Wnt/beta-catenin pathway. The effect of miR-363-3p was also tested in vivo using a xenograft mouse model. We observed an abnormal expression pattern of CELF2 in glioma cells, and higher CELF2 expression correlated with better prognosis. We identified miR-363-3p as an upstream regulator of CELF2 and confirmed its direct binding to the 3 '-untranslated region of CELF2. Cell function experiments showed that miR-363-3p affected multiple aspects of glioma cells. Suppressing miR-363-3p expression inhibited glioma cell proliferation and invasion, as well as promoted cell death via attenuating EMT and blocking the Wnt/beta-catenin pathway. These effects could be abolished by the downregulation of CELF2. Treatment with ASO-miR-363-3p decreased tumour size and weight in nude mice. In conclusion, miR-363-3p induced the EMT, which resulted in increased migration and invasion and reduced apoptosis in glioma cell lines, via the Wnt/beta-catenin pathway by targeting CELF2.
更多
查看译文
关键词
CELF2, EMT, glioma, miR-363-3p, Wnt/beta-catenin pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要