Electro-activation of peroxymonosulfate by a graphene oxide/iron oxide nanoparticle-doped Ti4O7 ceramic membrane: mechanism of singlet oxygen generation in the removal of 1,4-dioxane

Journal of Hazardous Materials(2022)

引用 37|浏览18
暂无评分
摘要
Electro-activation of peroxymonosulfate (PMS) has been widely investigated for the degradation of organic pollutants. Herein, we employ graphene oxide (GO)/Fe3O4 nanoparticles (NPs) doped into a Ti4O7 reactive electrochemical membrane through strong chemical bonding as the cathode to activate PMS for the degradation of 1,4-dioxane (1,4-D). The strong chemical interaction between GO, Fe3O4-NPs, and Ti4O7 via Fe–O---GO---O–Ti bonds enhances the electron-transfer efficiency and provides catalytically active sites that boost the electro-activation of PMS. As a result, the 1,4-D oxidation rate of the GO/Fe3O4-NPs@Ti4O7 REM cathode is ~3 times higher (7.21 × 10-3 min-1) than those of other Ti4O7 ceramic membranes, and 1O2 plays a key role (59.9%) in the degradation of 1,4-D. The 1O2 generation mechanism in the electro-activation process of PMS was systematically investigated, and we claimed that 1O2 is mainly generated from the precursors H2O2 and O2•–/HO2• rather than by O2 or •OH, as has been reported in previous studies. A flow-through mode test in the PMS electro-activation system is firstly reported, and the 1,4-D decay efficiency is 7.1 times higher than that obtained by a flow-by mode, showing that an improved PMS mass transfer efficiency enhances the conversion to reactive oxygen species.
更多
查看译文
关键词
Peroxymonosulfate,Ti4O7 Reactive electrochemical membranes (REM),Nanoparticles,1O2,1,4-Dioxane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要