Obtaining Cellulose-Available Raw Materials By Pretreatment Of Common Agro-Forestry Residues With Pleurotus Spp.

FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY(2021)

引用 5|浏览13
暂无评分
摘要
The goals of the present study were to characterize the profile of ligninolytic enzymes in five Pleurotus species and determine their ability to delignify eight common agro-forestry residues. Generally, corn stalks were the optimal inducer of Mn-dependent peroxidase activity, but the activity peak was noted after wheat straw fermentation by P. eryngii (3066.92 U/L). P. florida was the best producer of versatile peroxidase, especially on wheat straw (3028.41 U/L), while apple sawdust induced the highest level of laccase activity in P. ostreatus (49601.82 U/L). Efficiency of the studied enzymes was expressed in terms of substrate dry matter loss, which was more substrate-than species-dependent. Reduction of substrate dry mass ranged between 24.83% in wheat straw and 8.83% in plum sawdust as a result of fermentation with P. florida and P. pulmonarius, respectively. The extent of delignification of the studied substrates was different, ranging from 51.97% after wheat straw fermentation by P. pulmonarius to 4.18% in grapevine sawdust fermented by P. ostreatus. P. pulmonarius was also characterized by the highest cellulose enrichment (6.54) and P. ostreatus by very low one (1.55). The tested biomass is a highly abundant but underutilized source of numerous value-added products, and a cocktail of ligninolytic enzymes of Pleurotus spp. could be useful for its environmentally and economically friendly transformation.

更多
查看译文
关键词
delignification, laccase, lignocellulose, Mn-oxidizing peroxidases, white-rot fungi
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要