Benchmarking Dispersion-Corrected Dft Methods For The Evaluation Of Materials With Anisotropic Properties: Structural, Electronic, Dielectric, Optical And Vibrational Analysis Of Calcite (Caco3, Space Group R3c)

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2021)

引用 17|浏览6
暂无评分
摘要
Calcite (CaCO3, space group R3c) is a solid phase whose well-known highly anisotropic physical properties can be exploited to compare and calibrate various theoretical simulation methods. In this work, to benchmark different ab initio Density Functional Theory approaches that include for the first time corrections for dispersive forces, a systematic analysis of structural, electronic, dielectric, optical and vibrational properties of calcite is performed. The simulations considered the generalized-gradient approximation functional PBE and the hybrid B3LYP and PBE0, whereas the DFT-D2 and DFT-D3 schemes were adopted to account for the long-range interactions. This study suggests an overall better agreement between the theoretical results obtained with the DFT functionals corrected for the dispersive forces, with a better performance of hybrid functionals over PBE.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要