Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature

NATURE COMMUNICATIONS(2021)

引用 32|浏览31
暂无评分
摘要
Achieving CO oxidation at room temperature is significant for gas purification but still challenging nowadays. Pt promoted by 3 d transition metals (TMs) is a promising candidate for this reaction, but TMs are prone to be deeply oxidized in an oxygen-rich atmosphere, leading to low activity. Herein we report a unique structure design of graphene-isolated Pt from CoNi nanoparticles (PtǀCoNi) for efficiently catalytic CO oxidation in an oxygen-rich atmosphere. CoNi alloy is protected by ultrathin graphene shell from oxidation and therefore modulates the electronic property of Pt-graphene interface via electron penetration effect. This catalyst can achieve near 100% CO conversion at room temperature, while there are limited conversions over Pt/C and Pt/CoNiO x catalysts. Experiments and theoretical calculations indicate that CO will saturate Pt sites, but O 2 can adsorb at the Pt-graphene interface without competing with CO, which facilitate the O 2 activation and the subsequent surface reaction. This graphene-isolated system is distinct from the classical metal-metal oxide interface for catalysis, and it provides a new thought for the design of heterogeneous catalysts.
更多
查看译文
关键词
co oxidation,pt-graphene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要