Connectivity of Centermost Chromatophores in Rhodobacter sphaeroides Bacteria.

MOLECULAR MICROBIOLOGY(2018)

引用 23|浏览4
暂无评分
摘要
The size of whole Rhodobacter sphaeroides prevents 3D visualization of centermost chromatophores in their native environment. This study combines cryo-focused ion beam milling with cryo-electron tomography to probe vesicle architecture both in situ and in 3D. Developing chromatophores are membrane-bound buds that remain in topological continuity with the cytoplasmic membrane and detach into vesicles when mature. Mature chromatophores closest to the cell wall are typically isolated vesicles, whereas centermost chromatophores are either linked to neighboring chromatophores or contain smaller, budding structures. Isolated chromatophores comprised a minority of centermost chromatophores. Connections between vesicles in growing bacteria are through similar to 10 nm-long, similar to 5 nm-wide linkers, and are thus physical rather than functional in terms of converting photons to ATP. In cells in the stationary phase, chromatophores fuse with neighboring vesicles, lose their spherical structure, and greatly increase in volume. The fusion and morphological changes seen in older bacteria are likely a consequence of the aging process, and are not representative of connectivity in healthy R. sphaeroides. Our results suggest that chromatophores can adopt either isolated or connected morphologies within a single bacterium. Revealing the organization of chromatophore vesicles throughout the cell is an important step in understanding the photosynthetic mechanisms in R. sphaeroides.
更多
查看译文
关键词
Rhodobacter sphaeroides,cryo-electron microscopy,cryo-electron tomography,cryo-focused ion beam milling,photosynthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要