Reversible structural transition of two-dimensional copper selenide on Cu(111)

NANOTECHNOLOGY(2022)

引用 1|浏览9
暂无评分
摘要
Structural engineering opens a door to manipulating the structures and thus tuning the properties of two-dimensional materials. Here, we report a reversible structural transition in honeycomb CuSe monolayer on Cu(111) through scanning tunneling microscopy and Auger electron spectroscopy (AES). Direct selenization of Cu(111) gives rise to the formation of honeycomb CuSe monolayers with one-dimensional moire structures (stripe-CuSe), due to the asymmetric lattice distortions in CuSe induced by the lattice mismatch. Additional deposition of Se combined with post annealing results in the formation of honeycomb CuSe with quasi-ordered arrays of triangular holes (hole-CuSe), namely, the structural transition from stripe-CuSe to hole-CuSe. Further, annealing the hole-CuSe at higher temperature leads to the reverse structural transition, namely from hole-CuSe to stripe-CuSe. AES measurement unravels the Se content change in the reversible structural transition. Therefore, both the Se coverage and annealing temperature play significant roles in the reversible structural transition in CuSe on Cu(111). Our work provides insights in understanding of the structural transitions in two-dimensional materials.
更多
查看译文
关键词
reversible, structural transition, 2D copper selenide, Cu(111)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要