Anomalous aggregation regimes of temperature-dependent Smoluchowski equations.

PHYSICAL REVIEW E(2022)

引用 4|浏览3
暂无评分
摘要
Temperature-dependent Smoluchowski equations describe the ballistic agglomeration. In contrast to the standard Smoluchowski equations for the evolution of cluster densities, with constant rate coefficients, the temperature-dependent equations describe both-the evolution of the densities as well as cluster temperatures, which determine the agglomeration rates. To solve these equations, we develop a Monte Carlo technique based on the low-rank approximation for the aggregation kernel. Using this highly effective approach, we perform a comprehensive study of the kinetic phase diagram of the system and reveal a few surprising regimes, including permanent temperature growth and "density separation" regime, with a large gap in the size distribution for middle-size clusters. We perform scaling analysis and classify the aggregation kernels for the temperature-dependent equations. Furthermore, we conjecture the lack of gelation in such systems. The results of the scaling theory agree well with the simulation data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要