Intermittent exposure to airborne particulate matter induces subcellular dysfunction and aortic cell damage in BALB/c mice through multi-endpoint assessment at environmentally relevant concentrations

Journal of Hazardous Materials(2022)

引用 9|浏览17
暂无评分
摘要
Airborne particulate matter (PM) has been linked to cardiovascular diseases, but the underlying mechanisms remain unclear, especially at realistic exposure levels. In this study, both male and female BALB/c mice were employed to assess vascular homeostasis following a standard urban particulate matter, PM SRM1648a, via oropharyngeal aspiration at three environmentally relevant concentrations. The tested indicators included histopathological observation and lipid deposition, as well as redox biology and inflammatory responses. Furthermore, endothelial monolayer, vascular cell apoptosis and subcellular function were assessed to decipher whether episodic PM SRM1648a exposure leads to vascular damage after multiple periods of treatment, including subacute (4 weeks) and subchronic (8 weeks) durations. As a result, PM aspiration caused thickening of airways, leukocytes infiltration and adhesion to alveoli, with the spot of particles engulfed by pulmonary macrophages. Meanwhile, it induced local and systemic oxidative stress and inflammation, but limited pathological changes were captured throughout aortic tissues after either subacute or subchronic treatment. Furthermore, even in the absence of aortic impairment, vascular cell equilibrium has been disturbed by the characteristics of endothelial monolayer disintegration and cell apoptosis. Mechanistically, PM SRM1648a activated molecular markers of ER stress (BIP) and mitochondrial dynamics (DRP1) at both transcriptional and translational levels, which were strongly correlated to ox-inflammation and could serve as early checkpoints of hazardous events. In summary, our data basically indicate that episodic exposure of BALB/c mice to PM SRM1648a exerts limited effects on vascular histopathological alterations, but induces vascular cell apoptosis and subcellular dysfunction, to which local and systemic redox biology and inflammation are probably correlated.
更多
查看译文
关键词
Particulate matter,Vascular endothelial cell,Early checkpoint,Subcellular dysfunction,Endoplasmic reticulum stress,Mitochondrial dynamics,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要