Quantum-Mechanical Molecular Dynamics Simulations On Secondary Proton Transfer In Bacteriorhodopsin Using Realistic Models

JOURNAL OF PHYSICAL CHEMISTRY B(2021)

引用 10|浏览7
暂无评分
摘要
Bacteriorhodopsin (BR) transports a proton from intracellular to extracellular (EC) sites through five proton transfers. The second proton transfer is the release of an excess proton stored in BR into the EC medium, and an atomistic understanding of this whole process has remained unexplored due to its ubiquitous environment. Here, fully quantum mechanical (QM) molecular dynamics (MD) and metadynamics (MTD) simulations for this process were performed at the divide-and-conquer density-functional tight-binding level using realistic models (similar to 50000 and similar to 20000 atoms) based on the time-resolved photointermediate structures from an X-ray free electron laser. Regarding the proton storage process, the QM-MD/MTD simulations confirmed the Glu-shared mechanism, in which an excess proton is stored between Glu194 and Glu204, and clarified that the activation occurs by localizing the proton at Glu204 in the photocycle. Furthermore, the QM-MD/MTD simulations elucidated a release pathway from Glu204 through Ser193 to the EC water molecules and clarified that the proton release starts at similar to 250 mu s. In the ubiquitous proton diffusion in the EC medium, the transient proton receptors predicted experimentally were assigned to carboxylates in Glu9 and Glu74. Large-scale QM-MD/MTD simulations beyond the conventional sizes, which provided the above findings and confirmations, were possible by adopting our DCDFTBMD program.
更多
查看译文
关键词
bacteriorhodopsin,secondary proton transfer,quantum-mechanical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要