Genome Analysis of Acinetobacter lwoffii Strains Isolated from Permafrost Soils Aged from 15 Thousand to 1.8 Million Years Revealed Their Close Relationships with Present-Day Environmental and Clinical Isolates.

Biology(2021)

引用 6|浏览11
暂无评分
摘要
Microbial life can be supported at subzero temperatures in permafrost up to several million years old. Genome analysis of strains isolated from permafrost provides a unique opportunity to study microorganisms that have not previously come into contact with the human population. Acinetobacter lwoffii is a typical soil bacterium that has been increasingly reported as hospital pathogens associated with bacteremia. In order to identify the specific genetic characteristics of ancient permafrost-conserved strains of A. lwoffii and their differences from present-day clinical isolates, we carried out a genome-wide analysis of five strains of A. lwoffii isolated from permafrost aged from 15 thousand to 1.8 million years. Surprisingly, we did not identify chromosomal genetic determinants that distinguish permafrost strains from clinical A. lwoffii isolates and strains from other natural habitats. Phylogenetic analysis based on whole genome sequences showed that permafrost strains do not form a separate cluster and some of them are most closely related to clinical isolates. The genomes of clinical and permafrost strains contain similar mobile elements and prophages, which indicates an intense horizontal transfer of genetic material. Comparison of plasmids of modern and permafrost strains showed that plasmids from the modern strains are enriched with antibiotic resistance genes, while the content of genes for resistance to heavy metals and arsenic is nearly the same. The thawing of permafrost caused by global warming could release new potentially pathogenic strains of Acinetobacter.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要