Long-Term Population Dynamics Of Namib Desert Tenebrionid Beetles Reveal Complex Relationships To Pulse-Reserve Conditions

INSECTS(2021)

引用 4|浏览1
暂无评分
摘要
Simple Summary Rain seldom falls in the extremely arid Namib Desert in Namibia, but when a certain amount falls, it causes seeds to germinate, grass to grow and seed, dry, and turn to litter that gradually decomposes over the years. It is thought that such periodic flushes and gradual decay are fundamental to the functioning of the animal populations of deserts. This notion was tested with litter-consuming darkling beetles, of which many species occur in the Namib. Beetles were trapped in buckets buried at ground level, identified, counted, and released. The numbers of most species changed with the quantity of litter, but some mainly fed on green grass and disappeared when this dried, while other species depended on the availability of moisture during winter. Several species required unusually heavy rainfalls to gradually increase their populations, while others the opposite, declining when wet, thriving when dry. All 26 beetle species experienced periods when their numbers were extremely low, but all had the capacity for a few remaining individuals to repopulate the area in good times. The remarkably different relationships of these beetles to common resources, litter, and moisture, explain how so many species can exist side by side in such a dry environment. Noy-Meir's paradigm concerning desert populations being predictably tied to unpredictable productivity pulses was tested by examining abundance trends of 26 species of flightless detritivorous tenebrionid beetles (Coleoptera, Tenebrionidae) in the hyper-arid Namib Desert (MAP = 25 mm). Over 45 years, tenebrionids were continuously pitfall trapped on a gravel plain. Species were categorised according to how their populations increased after 22 effective rainfall events (>11 mm in a week), and declined with decreasing detritus reserves (97.7-0.2 g m(-2)), while sustained by nonrainfall moisture. Six patterns of population variation were recognised: (a) increases triggered by effective summer rainfalls, tracking detritus over time (five species, 41% abundance); (b) irrupting upon summer rainfalls, crashing a year later (three, 18%); (c) increasing gradually after series of heavy (>40 mm) rainfall years, declining over the next decade (eight, 15%); (d) triggered by winter rainfall, population fluctuating moderately (two, 20%); (e) increasing during dry years, declining during wet (one, 0.4%); (f) erratic range expansions following heavy rain (seven, 5%). All species experienced population bottlenecks during a decade of scant reserves, followed by the community cycling back to its earlier composition after 30 years. By responding selectively to alternative configurations of resources, Namib tenebrionids showed temporal patterns and magnitudes of population fluctuation more diverse than predicted by Noy-Meir's original model, underpinning high species diversity.
更多
查看译文
关键词
tenebrionidae, darkling beetle, long term ecological research, population signature, irruption, population crash, rainfall, nonrainfall moisture, detritivore, species diversity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要