Flavin oxidation state impacts on nitrofuran antibiotic binding orientation in nitroreductases

BIOCHEMICAL JOURNAL(2021)

引用 0|浏览5
暂无评分
摘要
Nitroreductases catalyse the NAD(P)H-dependent nitro reduction in nitrofuran antibiotics, which activates them into cytotoxic molecules leading to cell death. The design of new effective nitrofuran antibiotics relies on knowledge of the kinetic mechanism and nitro-furan binding mode of microbial nitroreductases NfsA and NfsB. This has been hampered by multiple co-crystallisation studies revealing ligand binding in non-electron transfer competent states. In a recent study by Day et al. (2021) the authors investigated the likely reaction mechanism and mode of nitrofurantoin binding to NfsA using potentiometry, global kinetics analysis, crystallography and molecular dynamics simulations. Their find-ings suggest nitrofurantoin reduction proceeds via a direct hydride transfer from reduced FMN, while the crystallographic binding orientation is an inhibitory complex. Molecular dynamics simulations suggest ligand binding orientations is dependent on the oxidation state of the FMN. This study highlights the importance of utilising computational studies alongside traditional crystallographic approaches, when multiple stable ligand binding orientations can occur.
更多
查看译文
关键词
antibiotic,flavin,flavoprotein
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要