A Horizon Study for Cosmic Explorer: Science, Observatories, and Community

arxiv(2021)

引用 11|浏览26
暂无评分
摘要
Gravitational-wave astronomy has revolutionized humanity's view of the universe. Investment in the field has rewarded the scientific community with the first direct detection of a binary black hole merger and the multimessenger observation of a neutron-star merger. Each of these was a watershed moment in astronomy, made possible because gravitational waves reveal the cosmos in a way that no other probe can. Since the first detection of gravitational waves in 2015, the National Science Foundation's LIGO and its partner observatory, the European Union's Virgo, have detected over fifty binary black hole mergers and a second neutron star merger -- a rate of discovery that has amazed even the most optimistic scientists.This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push the gravitational-wave astronomy towards the edge of the observable universe ($z \sim 100$). This Horizon Study presents the science objective for Cosmic Explorer, and describes and evaluates its design concepts for. Cosmic Explorer will continue the United States' leadership in gravitational-wave astronomy in the international effort to build a "Third-Generation" (3G) observatory network that will make discoveries transformative across astronomy, physics, and cosmology.
更多
查看译文
关键词
cosmic explorer,horizon study,observatories
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要