XCL1 Aggravates Diabetic Nephropathy-Mediated Renal Glomerular Endothelial Cell Apoptosis and Inflammatory Response via Regulating p53/Nuclear Factor-Kappa B Pathway

NEPHRON(2022)

引用 4|浏览8
暂无评分
摘要
Background: Glomerular endothelial cell damage plays an important role in the occurrence and development of diabetic nephropathy (DN). Objectives: This study aimed to clarify the role of XCL1 in DN-mediated glomerular endothelial cell apoptosis and whether the function was related to the activation of the p53/nuclear factor-kappa B (NF-kappa B) signaling pathway. Methods: Candidate biomarkers were identified by least absolute shrinkage and selection operator (LASSO) regression model analysis. The area under the receiver operating characteristic curve value was calculated and used to evaluate the discriminating ability. Cell viability, apoptosis, and interleukin-1 beta and tumor necrosis factor-alpha expression at messenger RNA and protein levels were detected by using the Cell Counting Kit-8, flow cytometry, ELISA, real-time polymerase chain reaction, and Western blotting assays. In vivo studies were conducted in the DN mice. Results: The LASSO regression model displayed good discriminating performance, with a C-index of 0.803 and good calibration, and high XCL1 expression was identified as the predicting factor for DN in diabetes mellitus patients. XCL1 expression was upregulated in glomeruli of db/db mice, which was closely related to the expression of its receptor (XCR1). XCL1 overexpression played an important role in the apoptosis and inflammatory response of high glucose (HG)-treated human renal glomerular endothelial cells. Meanwhile, the expression of p53 and the levels of inflammatory cytokines were upregulated upon XCL1 overexpression. p53 silencing with its inhibitor blocked the apoptotic response and inflammatory response in XCL1-overexpressed cells exposed to HG. Besides, the XCL1 overexpression-induced downregulation of NF-kappa B was reversed by pifithrin-alpha pretreatment. Conclusions: Our findings in this work provided the mechanistic insights into the effects of XCL1 on the modulation of DN development, illustrating that XCL1 might serve as an essential prognostic indicator and therapeutic target for DN progression.
更多
查看译文
关键词
Diabetic nephropathy, Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要