White Matter Structural Connectivity As A Biomarker For Detecting Juvenile Myoclonic Epilepsy By Transferred Deep Convolutional Neural Networks With Varying Transfer Rates

JOURNAL OF NEURAL ENGINEERING(2021)

引用 4|浏览10
暂无评分
摘要
Objective. By detecting abnormal white matter changes, diffusion magnetic resonance imaging (MRI) contributes to the detection of juvenile myoclonic epilepsy (JME). In addition, deep learning has greatly improved the detection performance of various brain disorders. However, there is almost no previous study effectively detecting JME by a deep learning approach with diffusion MRI. Approach. In this study, the white matter structural connectivity was generated by tracking the white matter fibers in detail based on Q-ball imaging and neurite orientation dispersion and density imaging. Four advanced deep convolutional neural networks (CNNs) were deployed by using the transfer learning approach, in which the transfer rate searching strategy was proposed to achieve the best detection performance. Main results. Our results showed: (a) Compared to normal control, the white matter' neurite density of JME was significantly decreased. The most significantly abnormal fiber tracts between the two groups were found to be cortico-cortical connection tracts. (b) The proposed transfer rate searching approach contributed to find each CNN's best performance, in which the best JME detection accuracy of 92.2% was achieved by using the Inception_resnet_v2 network with a 16% transfer rate. Significance. The results revealed: (a) Through detection of the abnormal white matter changes, the white matter structural connectivity can be used as a useful biomarker for detecting JME, which helps to characterize the pathophysiology of epilepsy. (b) The proposed transfer rate, as a new hyperparameter, promotes the CNNs transfer learning performance in detecting JME.
更多
查看译文
关键词
epilepsy detection, structural connectivity, diffusion MRI, deep learning, convolutional neural network, transfer learning, transfer rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要