Metabolizable Ph/H2o2 Dual-Responsive Conductive Polymer Nanoparticles For Safe And Precise Chemo-Photothermal Therapy

BIOMATERIALS(2021)

引用 12|浏览29
暂无评分
摘要
Conductive polymers with high near-infrared absorbance, have attracted considerable attention in the design of intelligent nanomedicines for cancer therapy, especially chemo-photothermal therapy. However, the unknown long-term biosafety of conductive polymers in vivo due to non-degradability hinders their clinic application. Herein, a H2O2-triggered degradable conductive polymer, polyacrylic acid (PAA) stabilized poly(pyrrole-3-COOH) (PAA@PPyCOOH), is fabricated to form nanoparticles with doxorubicin (DOX) for safe and precise chemo-phototherapy. The PAA@PPyCOOH was found to be an ideal photothermal nano-agent with good dispersity, excellent biocompatibility and high photothermal conversion efficiency (56%). After further loading of doxorubicin (DOX), PAA@PPyCOOH@DOX demonstrates outstanding photothermal performance, as well as pH/H2O2 dual-responsive release of DOX in tumors with an acidic and overexpressed H2O2 microenvironment, resulting in superior chemo-photothermal therapeutic effects. The degradation mechanism of PAA@PPyCOOH is proposed to be the ring-opening reaction between the pyrrole-3-COOH unit and H2O2. More importantly, the nanoparticles can be specifically degraded by excess H2O2 in tumor, and the degradation products were confirmed to be excreted via urine and feces. In vivo therapeutic evaluation of chemo-photothermal therapy reveals tumor growth of 4T1 breast cancer model is drastically inhibited and no apparent side-effect is detected, thus indicating substantial potential in clinic application.
更多
查看译文
关键词
Metabolizable, Conductive polymer, Chemo-photothermal therapy, Intelligent nanomedicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要