New insights into the role of molecular structures on the fate and behavior of antibiotics in an osmotic membrane bioreactor.

Journal of hazardous materials(2021)

引用 10|浏览21
暂无评分
摘要
Osmotic membrane bioreactors (OMBRs) have been applied to enhance removal of antibiotics, however, information on the effects of molecular structures on the behavior of antibiotics is still lacking. Herein, adsorption kinetics, transformation pathways, and membrane rejection mechanisms of OMBRs were investigated by adding two typical antibiotics (i.e., sulfadiazine, SDZ, and tetracycline hydrochloride, TC-HCl). 80.70-91.12% of TC-HCl was removed by adsorption and biodegradation, while 17.50-75.14% of SDZ was removed by membrane rejection; this depended on its concentration due to reduced electrostatic interactions and hydrophobic adsorption. The adsorption capacity of TC-HCl (i.e., 1.34±0.01 mg/g) was significantly higher than that of SDZ (i.e., 0.18±0.03 mg/g) due to enhanced π-π interactions, hydrogen bonding and improved electrostatic interactions. The abundant production of polysaccharide-like substances from TC-HCl biodegradation contributed to microbial metabolism and thus enhanced microbial function during TC-HCl biotransformation. The primary degradation pathways were determined by microbial function analysis, and the primary intermediates from TC-HCl degradation were less toxic than those from SDZ degradation due to the different reactions of amino groups. These results and the corresponding mechanism provide a theoretical foundation for the further development of OMBR technology for highly efficient treatment of antibiotic wastewater.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要