Elastography ultrasound with machine learning improves the diagnostic performance of traditional ultrasound in predicting kidney fibrosis

Journal of the Formosan Medical Association(2022)

引用 11|浏览27
暂无评分
摘要
Background: Noninvasively predicting kidney tubulointerstitial fibrosis is important because it's closely correlated with the development and prognosis of chronic kidney disease (CKD). Most studies of shear wave elastography (SWE) in CKD were limited to non-linear statistical dependencies and didn't fully consider variables' interactions. Therefore, support vector machine (SVM) of machine learning was used to assess the prediction value of SWE and traditional ultrasound techniques in kidney fibrosis.Methods: We consecutively recruited 117 CKD patients with kidney biopsy. SWE, B-mode, color Doppler flow imaging ultrasound and hematological exams were performed on the day of kidney biopsy. Kidney tubulointerstitial fibrosis was graded by semi-quantification of Masson staining. The diagnostic performances were accessed by ROC analysis.Results: Tubulointerstitial fibrosis area was significantly correlated with eGFR among CKD patients (R Z 0.450, P < 0.001). AUC of SWE, combined with B-mode and blood flow ultrasound by SVM, was 0.8303 (sensitivity, 77.19%; specificity, 71.67%) for diagnosing tubulointerstitial fibrosis (>10%), higher than either traditional ultrasound, or SWE (AUC, 0.6735 [sensitivity, 67.74%; specificity, 65.45%]; 0.5391 [sensitivity, 55.56%; specificity, 53.33%] respectively. De long test, p < 0.05); For diagnosing different grades of tubulointerstitial fibrosis, SWEcombined with traditional ultrasound by SVM, had AUCs of 0.6429 for mild tubulointerstitial fibrosis (11%-25%), and 0.9431 for moderate to severe tubulointerstitial fibrosis (>50%), higher than other methods (Delong test, p < 0.05). Conclusion: SWE with SVM modeling could improve the diagnostic performance of traditional kidney ultrasound in predicting different kidney tubulointerstitial fibrosis grades among CKD patients. Copyright 2021, Formosan Medical Association. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
更多
查看译文
关键词
Elasticity imaging techniques,Fibrosis,Kidney diseases,Support vector machine,Ultrasonography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要