A Combined Drug Treatment That Reduces Mitochondrial Iron And Reactive Oxygen Levels Recovers Insulin Secretion In Naf-1-Deficient Pancreatic Cells

ANTIOXIDANTS(2021)

引用 8|浏览13
暂无评分
摘要
Decreased insulin secretion, associated with pancreatic beta-cell failure, plays a critical role in many human diseases including diabetes, obesity, and cancer. While numerous studies linked beta-cell failure with enhanced levels of reactive oxygen species (ROS), the development of diabetes associated with hereditary conditions that result in iron overload, e.g., hemochromatosis, Friedreich's ataxia, and Wolfram syndrome type 2 (WFS-T2; a mutation in CISD2, encoding the [2Fe-2S] protein NAF-1), underscores an additional link between iron metabolism and beta-cell failure. Here, using NAF-1-repressed INS-1E pancreatic cells, we observed that NAF-1 repression inhibited insulin secretion, as well as impaired mitochondrial and ER structure and function. Importantly, we found that a combined treatment with the cell permeant iron chelator deferiprone and the glutathione precursor N-acetyl cysteine promoted the structural repair of mitochondria and ER, decreased mitochondrial labile iron and ROS levels, and restored glucose-stimulated insulin secretion. Additionally, treatment with the ferroptosis inhibitor ferrostatin-1 decreased cellular ROS formation and improved cellular growth of NAF-1 repressed pancreatic cells. Our findings reveal that suppressed expression of NAF-1 is associated with the development of ferroptosis-like features in pancreatic cells, and that reducing the levels of mitochondrial iron and ROS levels could be used as a therapeutic avenue for WFS-T2 patients.
更多
查看译文
关键词
NAF-1 (CISD2), oxidative stress, iron hemostasis, Wolfram syndrome type 2 (WFS-T2), ferroptosis, insulin secretion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要