In Vitro Model For A Drug Assessment Of Cytochrome P450 Family 3 Subfamily A Member 4 Substrates Using Human Induced Pluripotent Stem Cells And Genome Editing Technology

HEPATOLOGY COMMUNICATIONS(2021)

引用 7|浏览1
暂无评分
摘要
In drug development, a system for predicting drug metabolism and drug-induced toxicity is necessary to ensure drug safety. Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) is an important drug-metabolizing enzyme expressed in the liver and small intestine, and predicting CYP3A4-mediated drug metabolism and drug-induced toxicity is essential. We previously developed procedures to differentiate human induced pluripotent stem (iPS) cells into hepatocyte-like cells (HLCs) or intestinal epithelial-like cells (IECs) with a fetal phenotype as well as a highly efficient genome editing technology that could enhance the homologous recombination efficiency at any locus, including CYP3A4. By using human iPS cells and our genome editing technology, we generated CYP3A4-knockout (KO) iPS cell-derived HLCs and IECs for the evaluation of CYP3A4-mediated drug metabolism and drug-induced toxicity. CYP3A4 deficiency did not affect pluripotency and hepatic and intestinal differentiation capacities, and CYP3A4 activity was entirely eradicated by CYP3A4 KO. Off-target effects (e.g., inhibition of bile acid excretion) were hardly observed in CYP3A4-KO cells but were observed in CYP3A4 inhibitor-treated (e.g., ketoconazole) cells. To evaluate whether drug-induced hepatotoxicity and enterotoxicity could be predicted using our model, we exposed CYP3A4-KO HLCs and IECs to acetaminophen, amiodarone, desipramine, leflunomide, tacrine, and tolcapone and confirmed that these cells could predict CYP3A4-mediated toxicity. Finally, we examined whether the therapeutic effects of an anti-hepatitis C virus (HCV) drug metabolized by CYP3A4 would be predicted using our model. CYP3A4-KO HLCs were treated with asunaprevir (antiviral drug metabolized by CYP3A4) after HCV infection, and the anti-viral effect was indeed strengthened by CYP3A4 KO. Conclusion: We succeeded in generating a novel evaluation system for prediction of CYP3A4-mediated drug metabolism and drug-induced toxicity.
更多
查看译文
关键词
cytochrome p450,cytochrome p450 family,vitro model,drug assessment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要