Electrochemical study of a novel high-efficiency PbO2 anode based on a cerium-graphene oxide co-doping strategy: Electrodeposition mechanism, parameter optimization, and degradation pathways

Journal of Hazardous Materials(2022)

引用 37|浏览1
暂无评分
摘要
A novel and efficient Ti/SnO2-Sb/PbO2-GO-Ce electrode was successfully fabricated based on the co-deposition of Ce ions and graphene oxide (GO) into β-PbO2 crystals and used as an anode for electrocatalytic oxidation of phenol. The electrodeposition mechanism, parameter optimization, mechanism analysis, and potential degradation pathways were discussed in depth. The co-doping of GO and Ce resulted in the high directional specificity of β(301), orderly and dense grain arrangement of PbO2 crystals. At the same time, the oxygen evolution potential, •OH generation capacity and lifetime were also improved. The effects of experimental parameters on phenol removal efficiency were evaluated, including the applied current density, electrode gap, supporting electrolyte, initial NaCl concentration, initial pH, and initial phenol concentration. Under the optimal conditions, the removal efficiency of phenol can reach 375.6 g m-2 h-1 for 20 min electrolysis, which is about 1.2 times that of the pure PbO2 electrode. The active oxygen species (•OH, ClO- and HClO) were important attributes to the degradation of phenol. Additionally, a potential degradation pathway for phenol was proposed. After 10 successive recycles, there was no significant difference of the electro-generated •OH, cell voltage and phenol removal rate, which confirms the stability and admirable reusability of Ti/SnO2-Sb/PbO2-GO-Ce electrode.
更多
查看译文
关键词
Electrochemical oxidation,PbO2 composite electrode,GO,Phenol,Degradation mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要