Substituted 9-Anthraldehydes from Dibenzocycloheptanol Epoxides via Acid-Catalyzed Epoxide Opening/Semipinacol Rearrangement

JOURNAL OF ORGANIC CHEMISTRY(2021)

引用 5|浏览0
暂无评分
摘要
Starting from benzaldehyde derivatives, the corresponding dibenzocycloheptenol could be prepared in five steps. Under both substrate (secondary vs tertiary alcohol and the substituents on the aromatic ring(s)) and condition control, the subsequent epoxidation and acid-catalyzed epoxide opening/semipinacol rearrangement/aromatization afforded the corresponding 9-anthraldehydes in good yields, up to 88% over two steps. The presence of the electron-withdrawing group(s) on the aromatic ring(s) suppressed the rate of the epoxidation while the subsequent semipinacol rearrangement step required heating; the presence of the electron-donating group(s), on the other hand, frequently led to the decomposition during the epoxidation. From the mechanistic studies, the semipinacol rearrangement of the epoxide could precede the ionization at the bisbenzylic position, yielding the aldehyde intermediate. The ensuing dehydrative aromatization led to the formation of 9-anthraldehyde. Conversely, nucleophilic addition to the aldehyde and dehydrative aromatization with concomitant loss of formic acid led to anthracene.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要