Lab-On-A-Contact Lens Platforms Fabricated By Multi-Axis Femtosecond Laser Ablation

SMALL(2021)

引用 16|浏览8
暂无评分
摘要
Contact lens sensing platforms have drawn interest in the last decade for the possibility of providing a sterile, fully integrated ocular screening technology. However, designing scalable and rapid contact lens processing methods while keeping a high resolution is still an unsolved challenge. In this article, femtosecond laser writing is employed as a rapid and precise procedure to engrave microfluidic networks into commercial contact lenses. Functional microfluidic components such as flow valves, resistors, multi-inlet geometries, and splitters are produced using a bespoke seven-axis femtosecond laser system, yielding a resolution of 80 mu m. The ablation process and the tear flow within microfluidic structures is evaluated both experimentally and computationally using finite element modeling. Flow velocity drops of the 8.3%, 20.8%, and 29% were observed in valves with enlargements of the 100%, 200%, and 300%, respectively. Resistors yielded flow rate drops of 20.8%, 33%, and 50% in the small, medium, and large configurations, respectively. Two applications were introduced, namely a tear volume sensor and a tear uric acid sensor (sensitivity 16 mg L-1), which are both painless alternatives to current methods and provide reduced contamination risks of tear samples.
更多
查看译文
关键词
contact lenses, femtosecond laser ablation, lab-on-a-chip, microfluidics, wearable sensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要