A Polyyne Toxin Produced By An Antagonistic Bacterium Blinds And Lyses A Chlamydomonad Alga

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA(2021)

引用 14|浏览13
暂无评分
摘要
Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii. A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii. Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale. These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes
更多
查看译文
关键词
Chlamydomonas reinhardtii, eyespot, microbial interactions, Pseudomonas genome mining, Raman microspectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要