Effect Of Lncrna Xloc_005950 Knockout By Crispr/Cas9 Gene Editing On Energy Metabolism And Proliferation In Osteosarcoma Mg63 Cells Mediated By Hsa-Mir-542-3p

ONCOLOGY LETTERS(2021)

引用 7|浏览7
暂无评分
摘要
Cancer cells use glucose via glycolysis to maintain tumor cell proliferation. However, the effect of long non-coding RNAs (lncRNAs) on glycolysis in osteosarcoma (OS) cells remains unclear. The present study aimed to investigate the involvement of the lncRNA XLOC_005950/hsa-microRNA (miR)-542-3p/phosphofructokinase, muscle (PFKM) axis in the regulation of glucose metabolism, cell proliferation and apoptosis in the progression of OS. lncRNA XLOC_005950, hsa-miR-542-3p and PFKM expression in OS tissues and cells was detected via reverse transcription-quantitative PCR analysis. CRISPR/Cas9 gene editing was used to knockout lncRNA XLOC_005950 expression in MG63 cells. Cell Counting Kit-8 assay, flow cytometry, PFKM activity, and glucose and lactic acid content determination were performed to assess the effects of lncRNA XLOC_005950 knockout and overexpression of hsa-miR-542-3p on the phenotypes of OS cells. The dual-luciferase reporter assay was performed to confirm the targeting associations between lncRNA XLOC_005950, hsa-miR-542-3p and PFKM. The results demonstrated that lncRNA XLOC_005950 expression was upregulated in OS tissues and cells. Functional experiments indicated that lncRNA XLOC_005950 knockout decreased PFKM activity, the intracellular glucose and lactic acid content, and cell proliferation, while increasing apoptosis of OS cells. Furthermore, lncRNA XLOC_005950 knockout upregulated hsa-miR-542-3p expression and downregulated PFKM expression. Overexpression of hsa-miR-542-3p suppressed PFKM expression. Furthermore, lncRNA XLOC_005950, as the molecular sponge of miR-542-3p in OS, modulated the downstream target gene, PFKM. Taken together, the results of the present study suggest that lncRNA XLOC_005950 knockout may inhibit the progression of OS via hsa-miR-542-3p-mediated regulation of PFKM expression.
更多
查看译文
关键词
long non-coding RNA, osteosarcoma, aerobic glycolysis, CRISPR, Cas9, hsa-microRNA-542-3p, proliferation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要