Ba/Mg Co-Doped Hydroxyapatite/Plga Composites Enhance X-Ray Imaging And Bone Defect Regeneration

JOURNAL OF MATERIALS CHEMISTRY B(2021)

引用 18|浏览5
暂无评分
摘要
Hydroxyapatite (HA) is the most commonly used orthopedic implant material. In recent years, the emergence of cationic doped hydroxyapatite has revealed more possibilities for the biological application of HA. Conventional HA does not promote new bone formation because of its poor osteoinductive activity, and has a similar density to that of bone, leading to difficulty in distinguishing both via imaging. Magnesium ions are useful for regulating the cellular behavior and promoting bone regeneration. Ba ion related compounds, such as BaSO4, have a strong X-ray shielding effect. In this study, Ba/Mg@HA was synthesized to prepare Ba/Mg@HA/PLGA composites, and we aimed to investigate if Ba/Mg@HA/PLGA composites enhanced bone repair on osteoblasts and tibial defects, as well as the X-ray and CT imaging ability of bone implants in rats. The in vitro experimental results showed that the Ba/Mg@HA/PLGA composites significantly improved the attachment and osteogenic differentiation of MC3T3-E1 cells. These include the promotion of mineral deposition, enhancement of alkaline phosphatase activity, upregulation of OCN and COL-1 gene expression, and increase in COL-1 and OCN protein expression in a time- and concentration-dependent manner. The in vivo experimental results showed that the Ba/Mg@HA/PLGA composites significantly increased the rate of bone defect healing and the expression of BMP-2 and COL-1 in the bones of rats. X-ray and CT imaging results showed that the Ba/Mg@HA/PLGA composites enhanced the X-ray imaging ability. These findings indicate that the Ba/Mg@HA/PLGA composites can effectively promote bone formation and improve the X-ray and CT imaging abilities to a certain extent.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要