Dual drug release mechanisms through mesoporous silica nanoparticle/electrospun nanofiber for enhanced anticancer efficiency of curcumin.

Journal of biomedical materials research. Part A(2021)

引用 28|浏览3
暂无评分
摘要
Electrospun nanofibers (NFs)-based drug delivery approaches are of particular interest as a hopeful implantable nanoplatform for localized cancer therapy and treating tissue defect after resection, allowing the on-site drug delivery with minimal side effect to healthy cells. To maintain therapeutic concentrations of anticancer molecules for a relatively long time through a combination of burst and sustained drug release mechanisms, a hybrid of polycaprolactone and gelatin (PCL/GEL) was used for co-encapsulation of free curcumin (CUR) and CUR-loaded mesoporous silica nanoparticles (CUR@MSNs) via electrospinning, resulting in a novel drug-loaded nanofibrous scaffold, CUR/CUR@MSNs-NFs. The as-prepared MSNs and composite NFs were characterized via TGA, FTIR, FE-SEM, TEM, and BET. In vitro release profile of CUR from CUR/CUR@MSNs-NFs was examined, and the in vitro antitumor efficacy against MDA-MB-231 breast cancer cells was also evaluated through MTT, scratch assay, DAPI staining, and real-time PCR. The results disclosed that the smooth, bead-free, and randomly oriented CUR/CUR@MSNs-NFs displayed a combination of initial rapid discharge and sustained release for CUR, which led to higher cytotoxicity, lower migration as well as a more pronounced effect on apoptosis induction than CUR-NFs and CUR@MSNs-NFs. The present study illustrated that the dual drug release mechanisms through MSN/NF-mediated drug delivery systems might have a highly hopeful application as a localized implantable scaffold for potential postoperative breast cancer therapy.
更多
查看译文
关键词
breast cancer recurrence,curcumin,electrospun nanofiber,mesoporous silica nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要