Allele-Specific Knockdown Of Mutant Htt Protein Via Editing At Coding Region Snp Heterozygosities

MOLECULAR THERAPY(2021)

引用 6|浏览11
暂无评分
摘要
Huntington's disease (HD) is a devasting, autosomal dominant neurodegenerative disease caused by a trinucleotide repeat expansion in the HTT gene. Inactivation of the mutant allele by CRISPR-Cas9 based gene editing offers a possible therapeutic approach for this disease, but permanent disruption of normal HTT function might compromise adult neuronal function. Here, we use a novel HD mouse model to examine allele-specific editing of mutant HTT (mHTT), with a BAC97 transgene expressing mHTT and a YAC18 transgene expressing normal HTT. We achieve allele-specific inactivation of HTT by targeting a protein coding sequence containing a common, heterozygous single nucleotide polymorphism (SNP). The outcome is a marked and allele-selective reduction of mutant HTT (mHTT) protein in a mouse model of HD. Expression of a single CRISPR-Cas9 nuclease in neurons generated a high frequency of mutations in the targeted HD allele that included both small insertion/deletion (InDel) mutations and viral vector insertions. Thus, allele-specific targeting of InDel and insertion mutations to heterozygous coding region SNPs provides a feasible approach to inactivate autosomal dominant mutations that cause genetic disease.
更多
查看译文
关键词
Huntington's disease,gene editing,single nucleotide polymorphism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要