Use Of Transmission Electron Microscopy For Analysis Of Aerosol Particles And Strategies For Imaging Fragile Particles

ANALYTICAL CHEMISTRY(2021)

引用 10|浏览4
暂无评分
摘要
For over 25 years, transmission electron microscopy (TEM) has provided a method for the study of aerosol particles with sizes from below the optical diffraction limit to several microns, resolving the particles as well as smaller features. The wide use of this technique to study aerosol particles has contributed important insights about environmental aerosol particle samples and model atmospheric systems. TEM produces an image that is a 2D projection of aerosol particles that have been impacted onto grids and, through associated techniques and spectroscopies, can contribute additional information such as the determination of elemental composition, crystal structure, and 3D particle structures. Soot, mineral dust, and organic/inorganic particles have all been analyzed using TEM and spectroscopic techniques. TEM, however, has limitations that are important to understand when interpreting data including the ability of the electron beam to damage and thereby change the structure and shape of particles, especially in the case of particles composed of organic compounds and salts. In this paper, we concentrate on the breadth of studies that have used TEM as the primary analysis technique. Another focus is on common issues with TEM and cryogenic-TEM. Insights for new users on best practices for fragile particles, that is, particles that are easily susceptible to damage from the electron beam, with this technique are discussed. Tips for readers on interpreting and evaluating the quality and accuracy of TEM data in the literature are also provided and explained.
更多
查看译文
关键词
Aerosol Formation,Emission Modeling,Exposure Assessment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要