Biallelic GINS2 variant p.(Arg114Leu) causes Meier-Gorlin syndrome with craniosynostosis

JOURNAL OF MEDICAL GENETICS(2022)

引用 10|浏览12
暂无评分
摘要
Introduction Replication of the nuclear genome is an essential step for cell division. Pathogenic variants in genes coding for highly conserved components of the DNA replication machinery cause Meier-Gorlin syndrome (MGORS). Objective Identification of novel genes associated with MGORS. Methods Exome sequencing was performed to investigate the genotype of an individual presenting with prenatal and postnatal growth restriction, a craniofacial gestalt of MGORS and coronal craniosynostosis. The analysis of the candidate variants employed bioinformatic tools, in silico structural protein analysis and modelling in budding yeast. Results A novel homozygous missense variant NM_016095.2:c.341G>T, p.(Arg114Leu), in GINS2 was identified. Both non-consanguineous healthy parents carried this variant. Bioinformatic analysis supports its classification as pathogenic. Functional analyses using yeast showed that this variant increases sensitivity to nicotinamide, a compound that interferes with DNA replication processes. The phylogenetically highly conserved residue p.Arg114 localises at the docking site of CDC45 and MCM5 at GINS2. Moreover, the missense change possibly disrupts the effective interaction between the GINS complex and CDC45, which is necessary for the CMG helicase complex (Cdc45/MCM2-7/GINS) to accurately operate. Interestingly, our patient's phenotype is strikingly similar to the phenotype of patients with CDC45-related MGORS, particularly those with craniosynostosis, mild short stature and patellar hypoplasia. Conclusion GINS2 is a new disease-associated gene, expanding the genetic aetiology of MGORS.
更多
查看译文
关键词
DNA replication, genetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要