Oxygen-deficient metal oxides supported nano-intermetallic InNi3C0.5 toward efficient CO2 hydrogenation to methanol.

Science advances(2021)

引用 70|浏览4
暂无评分
摘要
Direct CO2 hydrogenation to methanol using renewable energy-generated hydrogen is attracting intensive attention, but qualifying catalysts represents a grand challenge. Pure-/multi-metallic systems used for this task usually have low catalytic activity. Here, we tailored a highly active and selective InNi3C0.5/ZrO2 catalyst by tuning the performance-relevant electronic metal-support interaction (EMSI), which is tightly linked with the ZrO2 type-dependent oxygen deficiency. Highly oxygen-deficient monoclinic-ZrO2 support imparts high electron density to InNi3C0.5 because of the considerably enhanced EMSI, thereby enabling InNi3C0.5/monoclinic-ZrO2 with an intrinsic activity three or two times as high as that of InNi3C0.5/amorphous-ZrO2 or InNi3C0.5/tetragonal-ZrO2 The EMSI-governed catalysis observed in the InNi3C0.5/ZrO2 system is extendable to other oxygen-deficient metal oxides, in particular InNi3C0.5/Fe3O4, achieving 25.7% CO2 conversion with 90.2% methanol selectivity at 325°C, 6.0 MPa, 36,000 ml gcat -1 hour-1, and H2/CO2 = 10:1. This affordable catalyst is stable for at least 500 hours and is also highly resistant to sulfur poisoning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要