Value Of Dual-Energy Dual-Layer Ct After Mechanical Recanalization For The Quantification Of Ischemic Brain Edema

FRONTIERS IN NEUROLOGY(2021)

引用 5|浏览3
暂无评分
摘要
Background and Purpose: Ischemic brain edema can be measured in computed tomography (CT) using quantitative net water uptake (NWU), a recently established imaging biomarker. NWU determined in follow-up CT after mechanical thrombectomy (MT) has shown to be a strong predictor of functional outcome. However, disruption of the blood-brain barrier after MT may also lead to contrast staining, increasing the density on CT scans, and hence, directly impairing measurements of NWU. The purpose of this study was to determine whether dual-energy dual-layer CT (DDCT) after MT can improve the quantification of NWU by measuring NWU in conventional polychromatic CT images (CP-I) and virtual non-contrast images (VNC-I). We hypothesized that VNC-based NWU (vNWU) differs from NWU in conventional CT (cNWU).Methods: Ten patients with middle cerebral artery occlusion who received a DDCT follow-up scan after MT were included. NWU was quantified in conventional and VNC images as previously published and was compared using paired sample t-tests.Results: The mean cNWU was 3.3% (95%CI: 0-0.41%), and vNWU was 11% (95%CI: 1.3-23.4), which was not statistically different (p = 0.09). Two patients showed significant differences between cNWU and vNWU (Delta = 24% and Delta = 36%), while the agreement of cNWU/vNWU in 8/10 patients was high (difference 2.3%, p = 0.23).Conclusion: NWU may be quantified precisely on conventional CT images, as the underestimation of ischemic edema due to contrast staining was low. However, a proportion of patients after MT might show significant contrast leakage resulting in edema underestimation. Further research is needed to validate these findings and investigate clinical implications.
更多
查看译文
关键词
net water uptake, mechanical recanalization, dual-energy computed tomography, virtual non-contrast image, brain edema, ischemia, acute stroke
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要