The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling.

Cell reports(2021)

引用 13|浏览11
暂无评分
摘要
The evolutionarily conserved Nrf2-Keap1 pathway is a key antioxidant response pathway that protects cells/organisms against detrimental effects of oxidative stress. Impaired Nrf2 function is associated with cancer and neurodegenerative diseases in humans. However, the function of the Nrf2-Keap1 pathway in the developing nervous systems has not been established. Here we demonstrate a cell-autonomous role of the Nrf2-Keap1 pathway, composed of CncC/Nrf2, Keap1, and MafS, in governing neuronal remodeling during Drosophila metamorphosis. Nrf2-Keap1 signaling is activated downstream of the steroid hormone ecdysone. Mechanistically, the Nrf2-Keap1 pathway is activated via cytoplasmic-to-nuclear translocation of CncC in an importin- and ecdysone-signaling-dependent manner. Moreover, Nrf2-Keap1 signaling regulates dendrite pruning independent of its canonical antioxidant response pathway, acting instead through proteasomal degradation. This study reveals an epistatic link between the Nrf2-Keap1 pathway and steroid hormone signaling and demonstrates an antioxidant-independent but proteasome-dependent role of the Nrf2-Keap1 pathway in neuronal remodeling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要