The boundary for quantum advantage in Gaussian boson sampling

SCIENCE ADVANCES(2022)

引用 31|浏览30
暂无评分
摘要
Identifying the boundary beyond which quantum machines provide a computational advantage over their classical counterparts is a crucial step in charting their usefulness. Gaussian boson sampling (GBS), in which photons are measured from a highly entangled Gaussian state, is a leading approach in pursuing quantum advantage. State-of-the-art GBS experiments that run in minutes would require 600 million years to simulate using the best preexisting classical algorithms. Here, we present faster classical GBS simulation methods, including speed and accuracy improvements to the calculation of loop hafnians. We test these on a similar to 100,000-core supercomputer to emulate GBS experiments with up to 100 modes and up to 92 photons. This reduces the simulation time for state-of-the-art GBS experiments to several months, a nine-orders of magnitude improvement over previous estimates. Last, we introduce a distribution that is efficient to sample from classically and that passes a variety of GBS validation methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要