The chemerin-CMKLR1 axis limits thermogenesis by controlling a beige adipocyte/IL-33/type 2 innate immunity circuit

SCIENCE IMMUNOLOGY(2021)

引用 28|浏览2220
暂无评分
摘要
IL-33-associated type 2 innate immunity has been shown to support beige fat formation and thermogenesis in subcutaneous inguinal white adipose tissue (iWAT), but little is known about how it is regulated in iWAT. Chemerin, as a newly identified adipokine, is clinically associated with obesity and metabolic disorders. We here show that cold exposure specifically reduces chemerin and its receptor chemerin chemokine-like receptor 1 (CMKLR1) expression in iWAT. Lack of chemerin or adipocytic CMKLR1 enhances cold-induced thermogenic beige fat via potentiating type 2 innate immune responses. Mechanistically, we identify adipocytes, particularly beige adipocytes, as the main source for cold-induced IL-33, which is restricted by the chemerin-CMKLR1 axis via dampening cAMPPKA signaling, thereby interrupting a feed-forward circuit between beige adipocytes and type 2 innate immunity that is required for cold-induced beige fat and thermogenesis. Moreover, specific deletion of adipocytic IL-33 inhibits cold-induced beige fat and type 2 innate immune responses. Last, genetic blockade of adipocytic CMKLR1 protects against diet-induced obesity and enhances the metabolic benefits of cold stimulation in preestablished obese mice. Thus, our study identifies the chemerin-CMKLR1 axis as a physiological negative regulator of thermogenic beige fat via interrupting adipose-immune communication and suggests targeting adipose CMKLR1 as a potential therapeutic strategy for obesity-related metabolic disorders.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要