Proton switching molecular magnetoelectricity

NATURE COMMUNICATIONS(2021)

引用 8|浏览11
暂无评分
摘要
The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to accelerate the design strategy for hydrogen-bonded multiferroic macromolecules accompanied by strong proton dependence of magnetic properties. The proton switching magnetoelectricity occurs in three-dimensional molecular heterogeneous solids. It consists of a molecular magnet network as proton reservoir to modulate ferroelectric polarization, while molecular ferroelectrics charging proton transfer to reversibly manipulate magnetism. The magnetoelectric coupling induces a reversible 29% magnetization control at ferroelectric phase transition with a broad thermal hysteresis width of 160 K (192 K to 352 K), while a room-temperature reversible magnetic modulation is realized at a low electric field stimulus of 1 kV cm −1 . The findings of electrostatic proton transfer provide a pathway of proton mediated magnetization control in hierarchical molecular multiferroics.
更多
查看译文
关键词
Ferroelectrics and multiferroics,Magnetic materials,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要