Regulation of CYP3A4 and CYP3A5 by a lncRNA: a potential underlying mechanism explaining the association between CYP3A4*1G and CYP3A metabolism

PHARMACOGENETICS AND GENOMICS(2022)

引用 9|浏览3
暂无评分
摘要
The cytochrome P450 3A4 (CYP3A4) enzyme is the most abundant drug-metabolizing enzyme in the liver, displaying large inter-person variability with unknown causes. In this study, we found that the expression of CYP3A4 is negatively correlated with AC069294.1 (ENSG00000273407, ENST00000608397.1), a lncRNA generated antisense to CYP3A4. Knockdown of AC069294.1 in Huh7 cells increased CYP3A4 mRNA similar to 3-fold, whereas overexpression of AC069294.1 decreased CYP3A4 mRNA by 89%. We also observed changes in CYP3A5 expression when AC069294.1 was knocked down or overexpressed, indicating dual effects of AC069294.1 on both CYP3A4 and CYP3A5 expression. Consistently, the expression level of CYP3A5 is also negatively correlated with AC069294.1. Previous studies have shown associations between an intronic single nucleotide polymorphism CYP3A4*1G (rs2242480) and CYP3A metabolism, but the results are inconsistent and the underlying mechanism is unclear. We show here that CYP3A4*1G (rs2242480) is associated with 1.26-fold increased expression of AC069294.1 (P < 0.0001), and decreased expression of CYP3A4 by 31% (P = 0.008) and CYP3A5 by 39% (P = 0.004). CYP3A4*1G is located similar to 2.7 kb upstream of AC069294.1 and has been previously reported to have increased transcriptional activity in reporter gene assays. Taken together, our results demonstrate the regulation of CYP3A4 and CYP3A5 by a novel lncRNA AC069294.1. Our results also indicate that the clinically observed CYP3A4*1G associations may be caused by its effect on the expression of AC069294.1, and thereby altered expression of both CYP3A4 and CYP3A5. Furthermore, because CYP3A4*1G is in high linkage disequilibrium with CYP3A5*1, increased AC069294.1 expression caused by CYP3A4*1G may decrease expression of the normal-functioning CYP3A5*1, explaining additional inter-person variability of CYP3A5.
更多
查看译文
关键词
cytochrome P450s, gene expression, lncRNA, polymorphisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要