Physics-informed Guided Disentanglement in Generative Networks

arxiv(2022)

引用 2|浏览10
暂无评分
摘要
Image-to-image translation (i2i) networks suffer from entanglement effects in presence of physics-related phenomena in target domain (such as occlusions, fog, etc), lowering altogether the translation quality, controllability and variability. In this paper, we build upon collection of simple physics models and present a comprehensive method for disentangling visual traits in target images, guiding the process with a physical model that renders some of the target traits, and learning the remaining ones. Because it allows explicit and interpretable outputs, our physical models (optimally regressed on target) allows generating unseen scenarios in a controllable manner. We also extend our framework, showing versatility to neural-guided disentanglement. The results show our disentanglement strategies dramatically increase performances qualitatively and quantitatively in several challenging scenarios for image translation.
更多
查看译文
关键词
networks,physics-informed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要