A Study Of The Brain Network Connectivity In Visual-Word Pairing Associative Learning And Episodic Memory Reactivating Task

COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE(2021)

引用 1|浏览3
暂无评分
摘要
Episodic memory allows a person to recall and mentally reexperience specific episodes from one's personal past. Studies of episodic memory are of great significance for the diagnosis and the exploration of the mechanism of memory generation. Most of the current studies focus on certain brain regions and pay less attention to the interrelationship between multiple brain regions. To explore the interrelationship in the brain network, we use an open fMRI dataset to construct the brain functional connectivity and effective connectivity network. We establish a binary directed network of the memory when it is reactivated. The binary directed network shows that the occipital lobe and parietal lobe have the most causal connections. The number of edges starting from the superior parietal lobule is the highest, with 49 edges, and 31 of which are connected to the occipital cortex. This means that the interaction between the superior parietal lobule and the occipital lobe plays the most important role in episodic memory, and the superior parietal lobule plays a more causal role in causality. In addition, memory regions such as the precuneus and fusiform also have some edges. The results show that the posterior parietal cortex plays an important role of hub node in the episodic memory network. From the brain network model, more information can be obtained, which is conducive to exploring the brain's changing pattern in the whole memory process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要