An integrated biological-electrocatalytic process for highly-efficient treatment of coking wastewater.

Bioresource technology(2021)

引用 15|浏览8
暂无评分
摘要
Coking wastewater is typically refractory, mainly due to its biological toxicity and complex composition. In this study, a novel integrated biological-electrocatalytic process consisting of two three-dimensional electrochemical reactors (3DERs), two biological aerated filters (BAFs), and a three-dimensional biofilm electrode reactor (3DBER) is developed for the advanced treatment of coking wastewater. 73.21% of chemical oxygen demand (COD), 38.02% of ammonium nitrogen (NH4+-N) and 91.46% of nitrate nitrogen (NO3--N) are removed by 3DERs. BAFs mainly convert NH4+-N to NO3--N through microbial nitrification. The 3DBER removes the residual NO3--N by bio-electrochemical denitrification. The integrated system can eliminate 74.72-83.27% of COD, 99.38-99.74% of NH4+-N, and 69.64-99.83% of total nitrogen from coking wastewater during the continuous operation, as well as significantly reducing the toxicity of the wastewater. The superiorities of the integrated 3DERs/BAFs/3DBER system recommend the application of such biological-electrocatalytic technology in the treatment of highly toxic wastewater.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要