3d Global Mapping Of Large-Scale Unstructured Orchard Integrating Eye-In-Hand Stereo Vision And Slam

COMPUTERS AND ELECTRONICS IN AGRICULTURE(2021)

引用 88|浏览25
暂无评分
摘要
Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable fruit-picking robot. The latest vision-based fruit-picking robots have been able to adapt to the complex background, uneven lighting and low color contrast of the orchard environment. However, most of them have, until now, been limited to a small field of view or rigid sampling manners. Although the simultaneous localization and mapping (SLAM) methods have the potential to realize large scale sensing, it was critically revealed in this study that the classic SLAM pipeline is not completely adapted to orchard picking tasks. In this study, the eye-in-hand stereo vision and SLAM system were integrated to provide detailed global map supporting long-term, flexible and large-scale orchard picking. To be specific, a mobile robot based on eye-in-hand vision was built and an effective hand-eye calibration method was proposed; a state-of-theart object detection network was trained and used to establish a dynamic stereo matching method adapted well to complex orchard environments; a SLAM system was deployed and combined with the above eye-in-hand stereo vision system to obtain a detailed, wide 3D orchard map. The main contribution of this work is to build a new global mapping framework compatible to the nature of orchard picking tasks. Compared with the existing studies, this work pays more attention to the structural details of the orchard. Experimental results indicated that the constructed global map achieved both large-scale and high-resolution. This is an exploratory work providing theoretical and technical references for the future research on more stable, accurate and practical mobile fruit picking robots.
更多
查看译文
关键词
Fruit-picking robot, 3D mapping, Stereo vision, SLAM, Stereo matching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要